
Learning Coordinated Bimanual Manipulation Policies
using State Diffusion and Inverse Dynamics Models

Haonan Chen, Jiaming Xu*, Lily Sheng*, Tianchen Ji, Shuijing Liu, Yunzhu Li, and Katherine Driggs-Campbell

Jointly hold Grasp & Drop

Block

Predicting Future Object States Fruit Holding

Push-L Laundry Cleanup

Cluttered Shelf Picking

Fig. 1: Prediction-aided imitation learning for coordinated bimanual manipulation. In the left image, the L-shaped blocks are represented by keypoints,
with their predicted future trajectories visualized. The diffusion model predicts future states, which the inverse dynamics model uses along with the previous
state to generate actions. Our framework is validated with underactuated systems, deformable objects, bimanual coordination, and multi-object interactions,
demonstrated in tasks such as push-L, laundry cleanup, fruit holding, and cluttered shelf picking.

Abstract— hen performing tasks like laundry, humans natu-
rally coordinate both hands to manipulate objects and antici-
pate how their actions will change the state of the clothes. How-
ever, achieving such coordination in robotics remains challeng-
ing due to the need to model object movement, predict future
states, and generate precise bimanual actions.hen performing
tasks like laundry, humans naturally coordinate both hands to
manipulate objects and anticipate how their actions will change
the state of the clothes. However, achieving such coordination
in robotics remains challenging due to the need to model object
movement, predict future states, and generate precise bimanual
actions.W In this work, we address these challenges by infusing
the predictive nature of human manipulation strategies into
robot imitation learning. Specifically, we disentangle task-
related state transitions from agent-specific inverse dynamics
modeling to enable effective bimanual coordination. Using a
demonstration dataset, we train a diffusion model to predict
future states given historical observations, envisioning how the
scene evolves. Then, we use an inverse dynamics model to
compute robot actions that achieve the predicted states. Our
key insight is that modeling object movement can help learning
policies for bimanual coordination manipulation tasks. Evalu-
ating our framework across diverse simulation and real-world
manipulation setups, including multimodal goal configurations,
bimanual manipulation, deformable objects, and multi-object
setups, we find that it consistently outperforms state-of-the-art
state-to-action mapping policies. Our method demonstrates a
remarkable capacity to navigate multimodal goal configurations
and action distributions, maintain stability across different
control modes, and synthesize a broader range of behaviors
than those present in the demonstration dataset.

I. INTRODUCTION

Many everyday bimanual manipulation tasks, such as
cooking or sorting laundry, are simple for humans but remain
challenging for robots. Humans naturally anticipate how their
actions will influence object states, using predictive reason-
ing to guide movements [1], [2]. Unlike single-arm tasks,

which primarily involve independent end-effectors, bimanual
tasks demand cooperative force distribution, complex spatial
planning, and interaction-aware control, making it difficult
for robots to achieve stability and precision, especially in
tasks involving deformable or multiple objects.

Despite recent advances in robotic manipulation [3]–[6],
bimanual coordination remains an open challenge due to the
intricate interplay between robot actions and object dynam-
ics. Many imitation learning methods rely on end-to-end
state-action mapping, which struggles to generalize across
multimodal goal configurations and unseen interactions [7],
[8]. In contrast, humans excel at using both hands simulta-
neously because they explicitly anticipate object movement
before executing actions. This predictive strategy in human
manipulation motivates our approach to incorporating state
prediction into imitation learning.

To overcome these limitations, we propose a state
prediction-aided imitation learning framework that explicitly
models future states and actions, which enhances spatial and
force reasoning, as well as interaction-aware control for bi-
manual coordination. By leveraging diffusion models, which
have shown great performance in image, video generation,
and trajectory synthesis [9]–[14], we improve the robot’s
ability to anticipate future states and coordinate robot actions
effectively (Figure 1). Our approach integrates a diffusion
model to predict future states from historical data and an
inverse dynamics model to generate necessary actions to
achieve these predicted states.

Our key insight is that explicitly modeling object move-
ments greatly aids bimanual coordination. When two robots
coordinate to manipulate an object, such as lifting or moving
a large or deformable item, a failure like dropping the

object leads to a large state loss in our model, highlighting
coordination failure. In contrast, state-to-action mapping
approaches may not show significant action loss for similar
robot trajectories with an object drop, masking critical coor-
dination issues. Modeling the object state allows our method
to capture these errors more effectively, resulting in better
control in complex bimanual tasks.

Our contributions are summarized as follows: (1) We
propose a novel imitation learning framework that separates
state prediction from inverse dynamics modeling, improving
long-term planning and bimanual coordination. (2) We con-
duct a comprehensive studies, demonstrating the necessity
of both the diffusion model and inverse dynamics model
for complex, coordinated bimanul manipulation tasks. (3)
Through simulation benchmarking and real-world bimanual
experiments on tasks such as laundry cleanup, fruit holding,
and cluttered shelf picking, we demonstrate the superior
performance of our method, particularly in bimanual ma-
nipulation tasks, compared to state-of-the-art diffusion-based
approaches.

II. RELATED WORKS

Learning from Demonstrations: Learning from demonstra-
tions is a growing area in robotics, spanning various method-
ologies and applications [15]–[18]. Early research primarily
focused on on-policy learning, where the agent interacts with
and learns directly from the environment during training [19].
To improve data efficiency, there has been a shift towards
off-policy learning, employing strategies such as distribution
matching [20], [21], leveraging implicit network architec-
tures [7], and adopting more expressive networks [22]. How-
ever, these methods often struggle with understanding and
representing objects involved in manipulation tasks, crucial
for accurate and effective action planning. We address this
gap by adding state prediction as an additional supervision
signal from human demonstrations to enhance data efficiency
and improve object manipulation understanding.
Model Learning in Robotics Manipulation: Dynamics
models are crucial for complex robotic manipulation [23]–
[25]. Recent research primarily uses data-driven approaches
to learn physical dynamics [26]–[29]. Promising results
have been shown in modeling challenging dynamics such
as deformable objects [30], [31], articulated objects [32],
[33], granular objects [34], [35], and physical interactions
under friction [3]. Particle scene representations and Graph
Neural Networks are popular for modeling complex envi-
ronments due to their adaptability to arbitrary geometries
and ability to model physical interactions by aggregating
particle interactions [36], [37]. These methods often require
expert design and are typically task-specific [3], [34]. The
learned dynamics models are used for state predictions
in trajectory optimization within Model Predictive Control
frameworks [6], [38], or to replace costly environments in
RL [39]. Our approach extends model learning to imitation
learning by using human-collected datasets to simultaneously
learn a state prediction model and an inverse dynamics
model, enhancing generalization across tasks and improving
versatility in robotic systems.
Diffusion Models for Robotics: Diffusion models have
been applied in robotics due to their expressiveness [22],

Diffusion Model

Inverse Dynamics Model

Action

World

Robot PoseRobot PoseRobot Pose

Copy

Fig. 2: Overview of the proposed framework. At time step t, the Diffusion
Model takes as input the latest Ts steps of state data St and outputs the
denoised future states. The resulting sequence of state is then sliced and
processed by the inverse dynamics model to generate corresponding actions
at each feasible time step within the prediction horizon. In the example of
push-L task, the manipulated object state is characterized by a particle-based
representation, as shown in the images on the left.

[40], [41]. They have been successfully applied in RL [14],
[42], shared autonomy [43], imitation learning [44], [45],
motion planning [46], and reward learning [47], [48]. The
work most closely related to ours is Ajay et al. [14], who
applied conditional diffusion models for state prediction and
action generation in offline reinforcement learning (RL).
However, offline RL requires reward labeling and suffers
from extrapolation error, which leads to the overestimation of
out-of-distribution actions, causing instability during policy
training [49], [50]. Du et al. [51] demonstrated language-
conditioned video generation through pretraining on large-
scale text-video datasets with an inverse dynamics model
for policy generation, but video generation often misses
crucial low-level interaction information needed for precise
manipulation, such as contact dynamics, object deformation,
and force application required for dexterous tasks. More-
over, their work focused solely on generating robot videos
without conducting any robot experiments. Unlike previous
works that focus primarily on simulation or video genera-
tion, our framework enables safe, reward-free deployment
in real-world bimanual manipulation. Our method allows
robots to solve complex, coordinated tasks while unlocking
capabilities unattainable with simulation- or video-driven
approaches.

III. APPROACH

Our approach consists of two parts as shown in Figure 2:
(1) A diffusion-based state prediction model to predict the
future states of the world, (2) An inverse dynamics model
that takes predictions as input to determine robot actions.
State Prediction Diffusion Model: Our approach uses
a variant of the Denoising Diffusion Probabilistic Model
(DDPM) [52], [53] to predict the state of the world at
future timesteps. We use St to represent the state of the
world at time t. Given an input with Gaussian noise Sk

t ,
the goal is to recreate the true state at time t, denoted as
S0
t . The DDPM processes the noisy state Sk

t along with the
iteration index k to deduce the noise component, which is
subtracted from the noisy state Sk

t . Through K iterations
of denoising, the DDPM yields a sequence of intermediate

states Sk,Sk−1, . . . ,S0, each with progressively reduced
noise, culminating in a noise-free state S0. The reverse
diffusion process can be represented as:

Sk−1
t = α(Sk

t − γϵθ(S
0
t−Ts:t−1,S

k
t , k) +N

(
0, σ2I

)
) (1)

where α and γ are derived from a closed-form expression
of the variance schedule, and ϵθ(S

0
t−Ts:t−1,S

k
t , k) represents

the model’s estimate of the noise to be removed given
the previous state history S0

t−Ts:t−1. The Gaussian noise is
denoted as N (0, σ2I).

We train the diffusion-based state prediction model using
the following loss function:

Lpred = ∥ϵk − ϵθ(S
0
t−Ts:t−1,S

0
t + ϵk, k)∥22 (2)

where Lpred is the L2 loss between the actual noise ϵk

and the noise predicted by the model ϵθ, guiding the model
in accurately estimating the noise to be removed at each
iteration k.

During training, states are randomly sampled from the
demonstration dataset. For each sampled state, the network
processes the denoising iteration k, the noisy state, and
preceding frames of the state to output the noise ϵθ that
needs to be removed. This output is compared against a
randomly sampled noise ϵ with the appropriate variance for
iteration k, minimizing the loss as defined in Eq. 4. In
the deployment phase, we initialize a vector of length Tp

with noise drawn from a Gaussian distribution, incorporating
a low-temperature factor to reduce the initial noise level.
After K iterations, the model generates predictions for future
states, guiding the anticipated progression of the object or
environment in relation to the task.

The importance of modeling object movements through
state prediction is highlighted in coordinated object manipu-
lation. In such scenarios, if the object is dropped or mishan-
dled, the state prediction loss would reflect this as a large
state error. However, in state-to-action mapping, if the robot
trajectories are similar but the object is dropped or not moved
as expected, the action loss would remain relatively small,
potentially missing the critical failure in object manipulation.
Our method captures this distinction effectively, especially in
tasks requiring bimanual coordination.
Inverse Dynamics Model: In the standard formulation of
inverse dynamics models, inputs are states at two consecutive
time steps, st and st+1, and the output is the action required
for the agent or robot to transition from state st to st+1.
We denote states st−Th+1:t as the history and st+1:t+Tf

as the future, respectively. We propose a modification to
this model by introducing a variable number of historical
and future states into the inverse dynamics framework. This
modification allows the model to consider a sequence of past
and future states, formalized as:

at = f−1(st−Th+1:t, st+1:t+Tf
) (3)

where Th represents the number of historical states, and Tf

denotes the number of future states.
Policy Composition: The state prediction network is adopted
from the temporal convolutional neural network introduced
by Janner et al. [41] and Diffusion Policy [22]. The inverse
dynamics model is represented by a multi-layer perception

Block Push Franka Kitchen Push-L

Fig. 3: Simulation Benchmarks. The XArm robot needs to push two blocks
into randomized square positions. The Franka robot needs to manipulate
seven objects in a virtual kitchen. The agent needs to push two L-shaped
blocks to a target location.

model, which is trained using an MSE loss between the
actual action and the model’s predicted action LInvDyn.
The final loss for our framework L is a composition of the
state prediction loss and the action prediction loss, which
optimizes both networks jointly.

LInvDyn = ||at, f−1(st−Th+1:t+Tf
)||22

L = β · Lpred + (1− β) · LInvDyn

(4)

We apply the inverse dynamics model on the input states
and predicted states to generate Ta step actions, encouraging
action consistency by incorporating temporal information
into the decision-making process.

IV. SIMULATION BENCHMARKING

To validate our approach, we conducted extensive
simulation experiments on various challenging tasks as part
of a standard benchmarking process, as shown in Figure 3.
These experiments demonstrated the robustness and
efficiency of our method against state-of-the-art baselines.
We evaluated performance in diverse environments and
datasets, focusing on tasks requiring precise manipulation
and long-horizon planning. The results highlight our
method’s advantages in success rate, efficiency, and
generalization across diverse scenarios.

A. Simulation Environments
Multimodal Block Pushing: Adapted from Behavior Trans-
formers [8], the Multimodal Block Pushing task requires an
XArm robot to push two blocks into two squares in any order.
Initial positions and rotations of the blocks are randomized.
Franka Kitchen: Adapted from [54], the Franka Kitchen
task requires a Franka robot to manipulate 7 objects (a
microwave, kettle, slide cabinet, hinge cabinet, light switch,
and two burner knobs) in a virtual kitchen environment.
Push-L: Adapted from Implicit Behavior Cloning and diffu-
sion policy [7], [22], the Push-L task requires manipulating
two L-shaped blocks toward a target using a circular end-
effector. The task is inherently long-horizon and multi-stage,
requiring the strategic assembly of the two objects before
they navigate to the goal area. The agent must exploit
complex, contact-rich multi-object dynamics for precise ma-
nipulation. The symmetric shape of the combined objects
allows for multiple goal configurations to achieve success.
Variability is introduced through randomized initial positions
of the blocks and end-effector.

B. Baselines and Evaluation Metrics
We employ the DP (Diffusion Policy), which utilizes a

diffusion model for end-to-end state-to-action mapping [22].
Additionally, we integrate recent advancements [53], [55]

TABLE I: Performance of different models in both position (Pos) and velocity (Vel) control modes for the Franka
Kitchen task. Our policy shows superior performance across the task, interacting successfully with five objects and achieving
a 29.3% success rate in position control, despite training on a four-object interaction dataset.

Model Ctrl Franka Kitchen
p1 p2 p3 p4 p5

DP Vel 0.673±0.031 0.067±0.024 0.020±0.000 0.000±0.000 0.000±0.000
IDP Vel 0.800±0.069 0.073±0.042 0.020±0.000 0.000±0.000 0.000±0.000
Ours Vel 0.920±0.020 0.427±0.083 0.133±0.031 0.027±0.012 0.007±0.012

DP Pos 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.030±0.009
IDP Pos 1.000±0.000 1.000±0.000 1.000±0.000 0.960±0.000 0.030±0.009
Ours Pos 1.000±0.000 1.000±0.000 0.993±0.012 0.953±0.042 0.293±0.012

TABLE II: Performance of different models in both
position control (Pos) and velocity control (Vel) modes
for the Block Push task. Our model achieves higher p1
and p2 metrics in both control modes compared to other
diffusion models.

Model Ctrl Block Push
p1 p2

DP Vel 0.353±0.034 0.107±0.025
IDP Vel 0.327±0.025 0.120±0.016
Ours Vel 0.633±0.068 0.280±0.016

DP Pos 0.648±0.031 0.247±0.012
IDP Pos 0.647±0.081 0.327±0.063
Ours Pos 0.713±0.012 0.340±0.060

TABLE III: Comparison of models on the Push-L task.
Success rates demonstrate that our model with the inverse
dynamics model significantly outperforms baselines.

Model Push-L

RNN-GMM 0.120 ± 0.035
DP 0.474 ± 0.025
IDP 0.502 ± 0.012
Ours w/o Inv 0.613 ± 0.034
Ours 0.793 ± 0.042

in diffusion model research to enhance the performance of
the DP, resulting in what we refer to as the IDP (Improved
Diffusion Policy). The modification aims to benchmark the
foundational capabilities and improvements over the standard
model, providing a comparative analysis of the performance
enhancements from our framework. To demonstrate the ne-
cessity of the denoising network, we also include a baseline
RNN-GMM (Recurrent Gaussian Mixture Model) policy. We
report the results from the best-performing checkpoint across
50 different initial conditions from 3 seeds (150 in total),
with the metric being the success rate for all tasks. Moreover,
we examine each method’s effectiveness in both position
control (Pos) and velocity control (Vel) modes.

Evaluation Metrics: We use the success rate to measure
how effectively the agent pushes two L-shaped blocks to the
target areas in the Push-L task. The p” values in the Block
Push Environment represent the number of blocks pushed
into the target region. In the Franka Kitchen Task, the p”
values indicate the number of tasks successfully completed,
serving as a quantitative measure of task accomplishment.
These tasks include turning the oven knobs, turning on the
light switch, opening the slide cabinet, opening the hinge
cabinet, opening the microwave door, and moving the kettle
to the top left burner.

C. Results
Capability for Task Behavior Synthesis: The performance
outcomes for the Franka Kitchen tasks are detailed in Table I.
Our approach surpasses the baseline models across all control
configurations. Notably, in 29.3% of the trials, our position
control policy successfully completed 5 tasks. Although the
dataset contains trajectories where the robot achieves 4 out
of these 7 tasks in a random order, our policy is able
to synthesize the behavior to achieve 5 tasks out of 7.
Such results underscore our model’s advanced capability to
synthesize complex behaviors that extend beyond the scope
of the initial demonstrations, highlighting its potential for
adaptive and intelligent robotic control in multi-stage multi-
task environments.
Necessity of an Explicit Inverse Dynamics Model: We
evaluate the importance of an explicit inverse dynamics
model by examining its impact on performance in the Push-
L task, as shown in Table III. Our approach achieves a
79.3% success rate, while removing the inverse dynamics
model resulted in an 18% performance drop. Although the
state prediction model can output the future state sequence,
including the pusher’s position, it fails to capture the nuances
of how the agent interacts with objects. Integrating the
inverse dynamics model allows the robot to better understand
the effect of contact dynamics on state transitions, leading to
a more comprehensive insight into agent-object interactions.
Impact of Control Mode on Policy Performance: The
performance outcomes for the Multimodal Block Pushing
task are detailed in Table II. The benchmark results compare
the performance across different models. Our method signif-
icantly outperforms both the original and improved diffusion
policies, showing a substantial increase in the number of ob-
jects successfully manipulated (p1 and p2 metrics). Notably,
our approach maintains stability between velocity and po-
sition control modes, avoiding the performance degradation
seen in the end-to-end diffusion policy.
Data Efficiency: We analyze the data efficiency of our
proposed method compared to the Improved Diffusion Policy
in simulation, and the results are shown in Figure 4. Our
method consistently outperforms the Improved Diffusion
Policy across all dataset sizes. For example, with a dataset
size of 100 demonstration trajectories, our method achieves a
success rate of 0.32, compared to 0.17 for the Improved Dif-
fusion Policy. At a dataset size of 200, our method’s success
rate increases to 0.793, while the Improved Diffusion Policy
reaches 0.502. The superior data efficiency of our method

Fig. 4: Performance comparison in simulation between ours and
improved diffusion policy. The x-axis represents the dataset size, and the
y-axis represents the success rate. Our method demonstrates higher sample
efficiency as it achieves better performance with the same dataset size due
to the utilization of more supervision signals.

100 120 140 160 180 200
Dataset Size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

Ours
Improved Diffusion Policy

stems from incorporating more supervision signals during
training. These additional signals provide comprehensive
information, enabling the model to learn more effectively
from each data point. Consequently, our method generates
more effective action plans with a smaller dataset, leading to
higher success rates in manipulation tasks. This efficiency is
particularly beneficial in real-world applications, where data
collection can be resource-intensive and expensive.

V. REAL-WORLD BIMANUAL COORDINATION
EXPERIMENTS

We evaluate our model’s real-world performance on bi-
manual coordination tasks, demonstrating its ability to tackle
long-horizon tasks, generate smooth state trajectories, and
manage action discontinuities. We performed a zero-shot
sim-to-real transfer of the push-L task, training the policy on
a simulation dataset. Additionally, we trained the policy on
real-world tasks: laundry cleanup, fruit holding, and cluttered
shelf picking.

A. 2D Push-L Experiment

Real-World Push-L Task: We evaluate our method in
the real world using policy trained from the simulation
demonstration dataset. Initially, we extract the key points of
objects based on their poses within the real-world coordinate
system, utilizing our perception pipeline. These key points,
identifiable on the blocks, can be visualized as in Figure 2.
Subsequently, we convert these key points into the simulation
coordinate system, serving as inputs to our model. The
model predicts the corresponding future states and actions
within the simulation. To actuate the robot, we translate the
simulation-derived actions back to the real-world context
through an inverse transformation process, mapping them
onto the robot base coordinate system. This procedure es-
tablishes a bidirectional link between the real-world setup
and the simulation, enabling seamless task execution.
Quantitative Results: We conducted tests under 12 distinct
initial conditions, as depicted in Figure 7. These conditions
were designed to cover a comprehensive range of scenarios,
including varying distances between the blocks and their
target regions, differences in the proximity of the blocks to
one another, assorted rotational configurations, and diverse
relative poses between the blocks and the agent. Our method

TABLE IV: Performance comparison between our method
and improved diffusion. LC: Laundry Cleanup (p# = number
of pillows moved). FH: Fruit Holding (p# = number of fruits
moved). CSP: Cluttered Shelf Picking (successful trials).

LC FH CSP
p1 p2 p1 p2 p3 p4 Success

IDP 14/15 0/15 14/15 14/15 10/15 5/15 0/15
Ours 15/15 8/15 15/15 15/15 15/15 8/15 14/15

achieves 9 out of 12 successful outcomes, significantly out-
performing the Improved Diffusion model, which succeeded
in only 2 of the 12 trials. This result indicates our model’s ca-
pability to synthesize reasonable plans for object movement,
consequently generating effective actions to manipulate the
objects toward the desired outcomes.
Qualitative Results: In our real-world demonstration of the
Push-L task, our policy predicted the future action sequence
the agent should take. In Figure 5, from the initial position of
the blocks, the agent began by first pushing the orange block
towards the blue block. The agent then adjusted the position
of the orange block so it could form a joint rectangle with
the blue block. This newly formed joint rectangle increases
the ease of manipulation and can then be pushed to the
target location efficiently. We compare these findings with
Diffusion Policy. With Diffusion Policy, the agent pushes
the orange block towards the target location but then over-
rotates the orange block. This causes the trial to fault and
the two blocks are not able to reach the target location.

B. 3D Bimanual Experiments
We additionally test our method in a challenging real-

world bimanual manipulation tasks.We collected 200 demon-
strations on UR5e robots using the Gello [56] teleoperation
system for each task.
Laundry Cleanup: In the Laundry Cleanup task, we re-
moved the grippers from our robots and the robots need to
move two pillows from the table to the laundry basket. This
task is challenging due to the need for precise coordination
and handling of soft, deformable objects. The observation is
point cloud of the robot and the scene. The actions involve
controlling the joint positions of both robots.
Fruit Holding: In the Fruit Holding task, four fruits are
placed on a table, and the robots must hold two fruits at a
time and move them to a bowl. This simulates the challenge
of humans holding multiple fruits, especially when they are
larger than the gripper openings, testing the robots’ ability
to handle objects of varying sizes. The observation is the
point cloud of the robot and scene, and the actions involve
controlling the joint positions of both robots.
Cluttered Shelf Picking: In the Cluttered Shelf Picking task,
a shelf is filled with various objects. One robot needs to
pick a target object from the shelf, while the other robot
prevents non-target objects from moving or collapsing. This
task is particularly challenging due to the need for spatial
awareness in a densely packed environment. The observation
is point cloud of the robot and the scene. The actions involve
controlling the joint positions and grippers of both robots.

C. Results
Figure 6 illustrates the typical failure cases of the base-

lines, showing their limitations in coordinated bimanual

t

D
iff
us
io
n

O
ur
s

Results

Jointly forming
a rectangle

Failed

Succeeded

Over-rotated

Fig. 5: Real-world comparison of different models on the Push-L task. In the first row, the improved diffusion model at first pushes the orange block
towards the target position, but then over-rotates this block, resulting in a failed trial. In the second row, our model pushes the orange block towards the
blue block to form a joint rectangle. The agent then pushes the joint rectangle toward the target location successfully.

Missed Pillow Dropped Fruit Missed Book
(c) Cluttered Shelf Picking(b) Fruit Holding(a) Laundry Cleanup

Fig. 6: Typical failure cases of the baselines. In the laundry cleanup task, the action-mimicking diffusion baseline failed to capture object movements
and dropped the second pillow; in the fruit holding task, the baseline dropped the fruit during transportation; in the cluttered shelf task, the baseline missed
extracting the book from the shelf.

tasks. In the laundry cleanup task, the action-mimicking
diffusion baseline failed to accurately capture object move-
ments, resulting in the second pillow being dropped. During
the fruit holding task, the baseline struggled to maintain a
grip on the fruit during transportation, leading to it being
dropped. In the cluttered shelf task, the baseline was unable
to extract the book from the shelf, demonstrating its difficulty
in handling complex object interactions that require biman-
ual coordination. Table IV presents a detailed performance
comparison between our method and the Improved Diffusion
model. We conducted each test under 15 different initial
conditions, covering a comprehensive range of scenarios, in-
cluding multi-object handling, modeling interactions between
the robot and objects, whole-body control, and deformable
objects using bimanual robots. In the Laundry Cleanup task,
our method achieved a perfect score of 15/15 for moving the
first pillow (p1) and 8/15 for moving the second pillow (p2),
whereas the Improved Diffusion model achieved 14/15 for p1
and 0/15 for p2. This demonstrates that our method is highly
effective in whole-body control and modeling the interactions
between the robot’s links and soft objects like pillows. The
coordination between the two robots was also successful.
For the Fruit Holding task, our method outperformed the
Improved Diffusion model across all scenarios (p1, p2, p3,
and p4). Our method achieved a perfect score of 15/15 for
p1, p2, and p3, and 8/15 for p4. In contrast, the Improved
Diffusion model achieved 14/15 for p1 and p2, 10/15 for
p3, and only 5/15 for p4. These results underscore our
method’s robustness in handling complex manipulation tasks
involving multiple objects and varying configurations. The
higher success rates demonstrate our method’s ability to
effectively model multi-object interactions, plan accurately,
and execute precise movements, leading to successful task

completion. For the Cluttered Shelf Picking task, our method
showed superior performance, as it better models interactions
between the gripper and objects compared to the baseline.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel approach for coordinated
bimanual manipulation utilizing a state prediction diffusion
model, which takes observation sequences and predicts future
states. Further, an inverse dynamics model is employed to
translate these predicted observations into specific actions
for the agent. Our evaluations across diverse complex envi-
ronments, including Block Push, Franka Kitchen, and Push-
L tasks, demonstrate superior performance against other
state-of-the-art end-to-end policies. Notably, in the Push-L
task, our approach achieves a higher success rate, showing
remarkable adaptability to varying initial block positions. We
further demonstrate the approach on real-world challenging
bimanual coordinated tasks, including laundry cleanup, fruit
holding, and cluttered shelf picking. The results underscore
our method’s robust capability in coordinating dual arms for
stable and precise control in bimanual manipulation, where
understanding scene evolution is crucial. Future research
could focus on optimizing the training process to reduce
time requirements, improving data handling efficiency, and
streamlining the collection of real-world demonstrations to
enhance practicality and scalability in coordinated bimanual
tasks.
Limitations: Our work encompasses the following limita-
tions. First, our method takes longer time to train than the dif-
fusion policy [22] because the state space is typically larger
than the action space, making the training longer. Second,
collecting real-world demonstrations is time-consuming and
labor-intensive.

ACKNOWLEDGMENTS

We thank Yiyang Xu’s assistance with demonstration col-
lection, as well as Zhe Huang, Neeloy Chakraborty for his in-
sightful feedback and suggestions. This work was supported
by ZJU-UIUC Joint Research Center Project No. DREMES
202003, funded by Zhejiang University. This work utilizes
resources supported by the National Science Foundation’s
Major Research Instrumentation program, grant #1725729,
as well as the University of Illinois at Urbana-Champaign.
This research used the Delta advanced computing and data
resource which is supported by the National Science Founda-
tion (award OAC 2005572) and the State of Illinois. Delta is
a joint effort of the University of Illinois Urbana-Champaign
and its National Center for Supercomputing Applications.
Additionally, this work used the Delta system at the National
Center for Supercomputing Applications through allocation
ELE230010 from the Advanced Cyberinfrastructure Coordi-
nation Ecosystem: Services & Support (ACCESS) program,
which is supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and #2138296.

REFERENCES

[1] E. Téglás and L. L. Bonatti, “Infants anticipate probabilistic but not
deterministic outcomes,” Cognition, vol. 157, pp. 227–236, 2016.

[2] C. Monroy, C.-H. Chen, D. Houston, and C. Yu, “Action prediction
during real-time parent-infant interactions,” Developmental Science,
vol. 24, no. 3, p. e13042, 2021.

[3] H. Chen, Y. Niu, K. Hong, S. Liu, Y. Wang, Y. Li, and K. R. Driggs-
Campbell, “Predicting object interactions with behavior primitives:
An application in stowing tasks,” in Conference on Robot Learning.
PMLR, 2023, pp. 358–373.

[4] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu, “Robocraft: Learning
to see, simulate, and shape elasto-plastic objects in 3d with graph
networks,” The International Journal of Robotics Research, vol. 43,
no. 4, pp. 533–549, 2024.

[5] S. Liu, P. Chang, Z. Huang, N. Chakraborty, K. Hong, W. Liang,
D. Livingston McPherson, J. Geng, and K. Driggs-Campbell, “In-
tention aware robot crowd navigation with attention-based interaction
graph,” in IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 12 015–12 021.

[6] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu, “Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools,” in 7th Annual
Conference on Robot Learning, 2023.

[7] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” in 5th Annual Conference on Robot Learning, 2021.

[8] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto, “Behavior
transformers: Cloning k modes with one stone,” in Advances in
Neural Information Processing Systems, A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, Eds., 2022.

[9] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 10 684–10 695.

[10] A. Blattmann, R. Rombach, K. Oktay, and B. Ommer, “Retrieval-
augmented diffusion models,” 2022.

[11] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J.
Fleet, “Video diffusion models,” arXiv:2204.03458, 2022.

[12] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fi-
dler, and K. Kreis, “Align your latents: High-resolution video synthesis
with latent diffusion models,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

[13] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in International Conference
on Machine Learning, 2022.

[14] A. Ajay, Y. Du, A. Gupta, J. B. Tenenbaum, T. S. Jaakkola, and
P. Agrawal, “Is conditional generative modeling all you need for deci-
sion making?” in The Eleventh International Conference on Learning
Representations, 2023.

[15] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565–
4573.

[16] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” in Advances in Neural Information
Processing Systems, 2017, pp. 3812–3822.

[17] K. Hausman, Y. Chebotar, S. Schaal, G. Sukhatme, and J. J. Lim,
“Multi-modal imitation learning from unstructured demonstrations
using generative adversarial nets,” in Advances in Neural Information
Processing Systems, 2017, pp. 1235–1245.

[18] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv preprint arXiv:1710.11248,
2017.

[19] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15. Fort
Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 627–635.

[20] O. Nachum, Y. Chow, B. Dai, and L. Li, “Dualdice: Behavior-
agnostic estimation of discounted stationary distribution corrections,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019.

[21] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[22] C. Chi, S. Feng, Y. Du, Z. Xu, E. A. Cousineau, B. Burchfiel, and
S. Song, “Diffusion policy: Visuomotor policy learning via action
diffusion,” in Proceedings of Robotics: Science and Systems (RSS),
2023.

[23] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 3008–3015.

[24] A. Billard and D. Kragic, “Trends and challenges in robot manipula-
tion,” Science, vol. 364, no. 6446, p. eaat8414, 2019.

[25] J. Zhou, Y. Hou, and M. T. Mason, “Pushing revisited: Differential flat-
ness, trajectory planning, and stabilization,” The International Journal
of Robotics Research, vol. 38, no. 12-13, pp. 1477–1489, 2019.

[26] M. Chang, T. Ullman, A. Torralba, and J. Tenenbaum, “A com-
positional object-based approach to learning physical dynamics,” in
International Conference on Learning Representations, 2016.

[27] I. Nematollahi, O. Mees, L. Hermann, and W. Burgard, “Hindsight
for foresight: Unsupervised structured dynamics models from physical
interaction,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 5319–5326.

[28] F. Baradel, N. Neverova, J. Mille, G. Mori, and C. Wolf, “Cophy:
Counterfactual learning of physical dynamics,” in International Con-
ference on Learning Representations (ICLR), 2020.

[29] Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome,
and P. Gallinari, “Augmenting physical models with deep networks
for complex dynamics forecasting,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2021, no. 12, p. 124012, 2021.

[30] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
in Conference on Robot Learning. PMLR, 2021, pp. 564–574.

[31] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning visible connectiv-
ity dynamics for cloth smoothing,” in Conference on Robot Learning.
PMLR, 2022, pp. 256–266.

[32] F. Endres, J. Trinkle, and W. Burgard, “Learning the dynamics of doors
for robotic manipulation,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2013, pp. 3543–3549.

[33] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani,
“Where2act: From pixels to actions for articulated 3d objects,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 6813–6823.

[34] Y. Wang, Y. Li, K. Driggs-Campbell, L. Fei-Fei, and J. Wu, “Dynamic-
resolution model learning for object pile manipulation,” in Proceedings
of Robotics: Science and Systems (RSS), 2023.

[35] H. Chen, Y.-J. Mun, Z. Huang, Y. Niu, Y. Xie, D. L. McPherson, and
K. Driggs-Campbell, “Learning task skills and goals simultaneously
from physical interaction,” arXiv preprint arXiv:2309.04596, 2023.

[36] D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. F. Fei-Fei, J. Tenen-
baum, and D. L. Yamins, “Flexible neural representation for physics
prediction,” Advances in neural information processing systems,
vol. 31, 2018.

[37] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” 2019.

[38] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu, “Robocraft: Learning to
see, simulate, and shape elasto-plastic objects with graph networks,”
arXiv preprint arXiv:2205.02909, 2022.

[39] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[40] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu,
S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, and S. Devlin,
“Imitating human behaviour with diffusion models,” in The Eleventh
International Conference on Learning Representations, 2023.

[41] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in International Conference
on Machine Learning, 2022.

[42] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive
policy class for offline reinforcement learning,” in The Eleventh
International Conference on Learning Representations, 2023.

[43] T. Yoneda, L. Sun, G. Yang, B. C. Stadie, and M. R. Walter, “To the
noise and back: Diffusion for shared autonomy,” in Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, 2023.

[44] M. Reuss, M. X. Li, X. Jia, and R. Lioutikov, “Goal-conditioned
imitation learning using score-based diffusion policies,” ArXiv, vol.
abs/2304.02532, 2023.

[45] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki,
“Chaineddiffuser: Unifying trajectory diffusion and keypose predic-
tion for robotic manipulation,” in 7th Annual Conference on Robot
Learning, 2023.

[46] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in Proceedings of the 39th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, Eds. PMLR, 17–23 Jul 2022.

[47] T. Huang, G. Jiang, Y. Ze, and H. Xu, “Diffusion reward: Learning
rewards via conditional video diffusion,” European Conference on
Computer Vision (ECCV), 2024.

[48] F. P. C. Nuti, T. Franzmeyer, and J. F. Henriques, “Extracting reward
functions from diffusion models,” in Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[49] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2018.

[50] A. Kumar, J. Fu, G. Tucker, and S. Levine, Stabilizing off-policy Q-
learning via bootstrapping error reduction. Red Hook, NY, USA:
Curran Associates Inc., 2019.

[51] Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum,
D. Schuurmans, and P. Abbeel, “Learning universal policies via text-
guided video generation,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[52] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Advances in Neural Information Processing Systems, 2020.

[53] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion prob-
abilistic models,” in International Conference on Machine Learning,
2021.

[54] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and reinforce-
ment learning,” arXiv preprint arXiv:1910.11956, 2019.

[55] M. Ning, E. Sangineto, A. Porrello, S. Calderara, and R. Cucchiara,
“Input perturbation reduces exposure bias in diffusion models,” in Pro-
ceedings of the 40th International Conference on Machine Learning,
ser. ICML’23, 2023.

[56] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel, “Gello: A general, low-
cost, and intuitive teleoperation framework for robot manipulators,”
ArXiv, vol. abs/2309.13037, 2023.

[57] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2010, pp. 998–1005.

[58] C. Chi, Z. Xu, C. Pan, E. A. Cousineau, B. Burchfiel, S. Feng,
R. Tedrake, and S. Song, “Universal manipulation interface: In-
the-wild robot teaching without in-the-wild robots,” ArXiv, vol.
abs/2402.10329, 2024.

APPENDICES

A. Optimizing Over the Whole Trajectory

In behavior cloning, we assume we have expert or rational
demonstrations. The network’s goal is to generate the corre-
sponding action given a state. During training, we maximize
the probability of the action from the dataset, assuming that
each step’s action is optimal.

The objective function for behavior cloning can be for-
mulated as follows: Given a dataset of state-action pairs
{(st, at)}, we define the probability p(at | st) of taking
action at given state st. The goal is to maximize the log-
probability of the actions over all state-action pairs in the
dataset:

max
θ

1

N

N∑
t=1

log pθ(at | st)

Here, pθ(at | st) represents the probability of taking
action at given the state st and the model parameters θ. By
optimizing θ, we aim to increase the likelihood of the actions
in the dataset, thereby learning a policy that can imitate the
behavior demonstrated in the dataset.

However, behavior cloning has a significant limitation: it
fails to consider the entire trajectory, potentially getting stuck
in locally-optimal or suboptimal states.

To address its limitation, we assume human-collected
trajectories represent either the lowest cost or highest reward
scenarios. Given a sequence of states s1, s2, . . . , sT and ac-
tions a1, a2, . . . , aT−1, the joint probability can be factorized
sequentially as follows:

p(s1, a1, s2, a2, . . . , sT) = p(s1)

T−1∏
t=1

p(st+1 | st)

·p(at | st−Th+1:t, st+1:t+Tf
)

Taking the logarithm of both sides, we obtain:

log p(s1, a1, s2, a2, . . . , sT) = log p(s1)

+

T−1∑
t=1

(
log p(st+1 | st) + log p(at | st−Th+1:t, st+1:t+Tf

)
)

We make the following assumptions:

• p(s1): The probability of the initial state.
• p(st+1 | st): The effect model, representing state

transitions.
• p(at | st−Th+1:t, st+1:t+Tf

): The inverse dynamics
model, representing the dependencies on previous and
future states.

Assuming the human-collected trajectory is optimal, our
goal is to maximize the probability of the entire trajectory.
By applying the logarithm to the probability, we derive the
corresponding objective functions.

To maximize the log probability of the entire trajectory,
we combine the objectives as follows:

TABLE V: Summary of Hyperparameters for Different
Tasks. Tp: state vector length, Ts : True state length, Ta :
Action execution horizon, Th : History input length toward
the inverse dynamic model, Tf : Future input length toward
the inverse dynamic model.

Task Ctrl Ts Ta Tp Th Tf

Push-L Pos 2 4 16 1 2
Block Push Pos 3 1 12 1 2
Franka Kitchen Pos 2 4 16 2 1
Block Push Vel 3 2 12 1 2
Franka Kitchen Vel 2 4 16 1 2

max

(
log p(s1) +

T−1∑
t=1

log p(st+1 | st)

+

T−1∑
t=1

log p(at | st−Th+1:t, st+1:t+Tf
)

)
Since the probability of the initial state p(s1) is often

known or assumed to be fixed, we focus on optimizing the
state transitions and actions:

max

(
T−1∑
t=1

log p(st+1 | st)+

T−1∑
t=1

log p(at | st−Th+1:t, st+1:t+Tf
)

)
This final objective function captures the essence of opti-
mizing the trajectory based on state transitions and actions,
assuming the initial state probability is given.

B. Implementation Details

To obtain a low-dimensional state representation in the
real world, we first train an encoder guided by an inverse
dynamics model to compress the high-dimensional input. We
then train the state prediction diffusion model and fine-tune
the inverse dynamics model.
Hyper-Parameter Selection: Hyperparameter Tuning is cru-
cial for our model’s performance across a variety of tasks.
In this section, we outline the hyperparameter configurations
tailored for each task, as summarized in Table V. For tasks
with human demonstrations, like Push-L and Franka Kitchen,
we set the state vector length Tp to 16, the true state length Ts

to 2, and the action execution horizon Ta to 4. In contrast, the
Block Push Task, derived from Oracle script demonstrations,
requires a distinct setup: an state vector length Tp of 12, a
true state length Ts of 3, and an action execution horizon Ta

of 1 for position control, with Ta = 2 for velocity control.
When considering the input length to the inverse dynamics
model, a history length Th of 1 and a future length Tf of
2 generally result in an optimal performance. However, the
Franka Kitchen task under position control benefits from a
longer historical context Th = 2, indicating the need for
more extensive historical data to synthesize more extended
behavior sequences effectively.
Real-World Robot Setup of Push-L Task: Our experi-
mental setup includes a UR5e robot and 4 RealSense D415

(a) Push-L Real World Experiment Setup (b) Push-L Real World Initial Conditions
Fig. 7: (a) Real-world experiment setup. We position four cameras at all four corners to fully capture the workspace. The goal location is marked on the
table with yellow tape. (b) Different initial conditions for the real-world Push-L task. To assess the efficacy of our policy compared to the improved
diffusion policy, we established 12 distinct block configurations. These setups were designed to span a broad spectrum of scenarios, encompassing variations
in block-to-target distances, block proximities, rotational states, and the relative positioning of blocks to the agent.

(a) Bimanual Real World Experiment Setup (b) Gello Teleoperation System (c) Soft Gripper
Fig. 8: Bimanual Robot Setup. (a) Bimanual experimental setup with two UR5e robots. (b) Gello teleoperation system. (c) The soft gripper model for
the Robotiq Hand-E gripper, made from TPU material and featuring anti-slip tape for increased friction.

cameras as shown in Figure 7 (a). We position the 4 cameras
to be angled and facing towards the workspace area to
completely capture the blocks’ movements and the block
locations. We observe frame rate discrepancy for sim-to-real
transfer, with the real-world operations proceeding at a frame
rate of 1, in contrast to the simulation’s frame rate of 10. Due
to the lagging from the perception system and control latency,
the interval between consecutive frames in the real world was
observed to be narrower than that in the simulation.

Real-World Perception Module for Push-L Task: After
collecting RGB and depth images from the 4 calibrated
cameras, we convert them to colored point clouds. This point
cloud is aggregated in the world coordinate system, after
which we crop it to focus on the workspace area. Subse-
quent steps involve employing color segmentation techniques
to isolate points corresponding to the object and utilizing
voxel downsampling to reduce the point cloud’s density. We
proceed to eliminate any outliers and compute the normals
of the point cloud. The processed point cloud allows us
to perform surface matching and the Iterative Closest Point
(ICP) registration [57]. We find the transformation to align
between the point cloud of the blocks, captured in real-time,
and the surface point cloud sampled from the object mesh,
thereby calculating the object pose in real time.

Bimanual Robot Setup: Our experimental setup features
a bimanual configuration with two UR5e robots, illustrated

Multimodal goal configurations

Fig. 9: Multimodal goal configurations. This figure depicts the goal
configurations the agent must solve in the Push-L task. The multiple goal
configurations allow for several possible object and robot action paths that
the agent can perform to achieve success.

in Figure 8 (a). The Gello teleoperation system, referenced
from Wu et al. [56], is shown in Figure 8 (b). This system
captures joint values from Gello and transmits them to the
UR5e robots during teleoperation. The soft gripper, designed
based on the model from Chi et al. [58], is used with the
Robotiq Hand-E gripper and is depicted in Figure 8 (c). The
gripper is constructed from TPU material and is equipped
with anti-slip tape to increase friction.

C. Additional Results

1) Simulation Dataset:
• Multimodal Block Pushing: A total of 1,000 demon-

t
(b

) F
H

Succeeded

(c
) C

SP

Succeeded

(a
) L

C

Succeeded

Fig. 10: Qualitative results from our real-world experiments. (a) During the laundry cleanup task, our state-predictive method allowed the robot to
handle the second pillow effectively. (b) In the fruit holding task, our method moved all four fruits without dropping any. (c) For the cluttered shelf picking
task, our method retrieved the pink book from the shelf without disturbing other items. These outcomes underscore the robustness and versatility of our
approach in practical scenarios.

strations were generated using a scripted oracle. In the
demonstrations, the agent reaches red and green blocks
and pushes them towards either square with equal
probability. Observations include positions and rotations
of the two blocks, current end-effector position, targeted
end-effector position, and goal regions’ positions and
rotations. Actions can be the effector’s future position
or the desired relative movement.

• Franka Kitchen: The dataset contains 566 demonstra-
tions by human experts. Each demonstration includes
the completion of 4 tasks in an arbitrary order, and the
robot is expected to achieve as many demonstrated tasks
as possible. Observations include the object state and
robot joint state, while actions are represented by the
robot’s joint angles or joint velocities.

• Push-L: We collect a dataset of 200 demonstrations.
Observations include key points from the two L-shaped
blocks and the agent’s position. Actions are defined by
the agent’s future position.

2) Push-L Manipulation Experiment:
• Characteristics and Complexity of Push-L Task: The

Push-L task is contact-rich, involving intricate interac-
tions between objects and between the objects and the
agent. An agent is tasked with maneuvering two L-
shaped objects to a target location. A key aspect of this
environment is the presence of multiple feasible action
trajectories, each capable of successfully completing
the task. This complexity is further enhanced by the
requirement for the agent to achieve success through a
variety of goal configurations, as shown in Figure 9.

• Robustness Testing: For robustness testing, a human
performed various perturbations on the system. In one
scenario, the human moved the block away from its
original position. Another test involved the human ad-
justing the block along the agent’s path. Additionally,

the human compressed the block, altering its path, and
finally, relocated the block to a significantly distant
position. These tests are illustrated in Figure 12. Our
method successfully handled all these perturbations,
demonstrating its robustness and adaptability.

3) Bimanual Real-World Experiments:
• Qualitative Results: Our real-world experiments show-

cased the qualitative performance of our method across
multiple scenarios, demonstrating its robustness and
adaptability. Figure 10 depicts examples of the robot
handling various manipulation tasks effectively. In the
laundry cleanup task, our approach, which anticipates
state changes, enabled the robot to manage the second
pillow successfully. In contrast, the action-only model,
which imitates the robot’s movements, failed to account
for the second pillow. Similarly, in the fruit holding
task, our method managed to transport all four fruits,
while the baseline approach resulted in one fruit being
dropped. In the cluttered shelf picking task, our method
succeeded in retrieving the pink book from a densely
packed shelf without disturbing the objects above it,
whereas the baseline method missed the book entirely.

• Generalization and Robustness Testing: To evaluate
the generalization ability of our approach, we conducted
out-of-distribution tests, including scenarios with hu-
man interventions and emergent behavior. Figure 11
illustrates the robot’s performance in three challeng-
ing conditions. In the first condition, the initial setup
differed from the training data, starting with only one
pillow on the table instead of the usual two. Our
method successfully adapted to this new condition and
completed the task, unlike the baseline approach which
failed. In the second condition, a human introduced
a perturbation by placing a pillow back on the table
after the robot had already placed it in the basket.

D
iff
us
io
n

O
ur
s(a
)O
O
D
Te
st
in
g

(b
)P
er
tu
rb
at
io
n

O
ur
s

t

Missed Pillow

Succeeded

SucceededHuman Perturbation

Adapted to OOD Case

Fig. 11: Out-of-distribution (OOD), human perturbation testing, and emergent behavior of our policy in the laundry clean-up task. (a) Unlike
the training data, where two pillows are initially on the table, this out-of-distribution test started with only one pillow and an empty basket. Our method
adapted and completed the task, while the baseline failed. (b) In a human perturbation scenario, after the robot placed two pillows in the basket, a human
returned one pillow to the table. The robot successfully resumed and completed the task, demonstrating our method’s robustness.

(a) Separate the block (b) Perturb along the agent (c) Squeeze blocks (d) Move block far away
Fig. 12: Human-performed perturbation scenarios. (a) Separate the block: a human moved one block away from its original position. (b) Perturb along
the agent: a human adjusted the block along the path of the agent. (c) Squeeze the block: a human squeezed the block, altering the path of both blocks.
(d) Move block far away: a human relocated the block to a distant position.

TABLE VI: Runtime Cost Results on an Nvidia A40 GPU. The runtime cost for each task, measured in seconds, is
presented for different models.

Model Block Push (s) Push-L (s) Franka Kitchen (s)

Diffusion Policy 0.590 ± 0.004 0.596 ± 0.001 0.604 ± 0.003
Improved Diffusion 0.607 ± 0.017 0.602 ± 0.002 0.634 ± 0.029
Ours 0.578 ± 0.007 0.588 ± 0.001 0.596 ± 0.007

TABLE VII: Training Time Results for Different Models. The training time for each task, measured in minutes, is
presented for different models.

Model Block Push (min) Push-L (min) Franka Kitchen (min)

Diffusion Policy 188 56 246
Improved Diffusion 255 86 307
Ours 306 125 706

Remarkably, the robot resumed and completed the task
despite this interruption.

D. Runtime and Training Time Analysis
1) Runtime Cost: Table VI presents the runtime cost

results (in seconds) on an Nvidia A40 GPU. The table
compares the runtime performance of three different models:

Diffusion Policy, Improved Diffusion, and Ours. For each
model, the runtime is measured across three tasks: Block
Push, Push-L, and Franka Kitchen. The results show that our
model achieves comparable inference times to the baselines
while achieving superior task performance.

2) Training Time: Table VII summarizes the training time
results (in minutes) for different models. Similar to the
runtime cost analysis, the training time is evaluated for the
Diffusion Policy, Improved Diffusion, and Our model across

the three tasks: Block Push, Push-L, and Franka Kitchen. The
results indicate that while our model requires longer training
times, it achieves significantly better task performance.

	Introduction
	Related Works
	Approach
	Simulation Benchmarking
	Simulation Environments
	Baselines and Evaluation Metrics
	Results

	Real-World Bimanual Coordination Experiments
	2D Push-L Experiment
	3D Bimanual Experiments
	Results

	Conclusions and Future Work
	References
	Optimizing Over the Whole Trajectory
	Implementation Details
	Additional Results
	Simulation Dataset
	Push-L Manipulation Experiment
	Bimanual Real-World Experiments

	Runtime and Training Time Analysis
	Runtime Cost
	Training Time

